
GEOSPATIAL LAYERS AND FEATURES: FROM VIRTUAL BASE
CLASSES TO PLATFORMS FOR PLANNING AND MODELING

Ari Jolma
Aalto University

Niemenkatu 73, 15140 Lahti, Finland

INTRODUCTION

Geographic information system (GIS) is traditionally defined as a set of computer tools capable of
storing, manipulating, analysing and retrieving geographic information (Burrough, 1986), while
designing objects, including geospatial objects, is specifically the domain of computer-aided design
computer technology, and simulating dynamic systems, including geospatial systems, is the domain
of simulation model software. A desktop GIS typically is optimized for managing collections of
geospatial data in raster and vector formats, accessing such data from servers in the internet, making
it available to various geospatial analysis methods, and presenting the data to the user. Presentation
of geographic data draws usually on cartographic traditions, whether it is for analytical purposes
(MacEachren et al. 2004) or common mapping. User interaction with data in GIS is often limited to
simple queries and editing of details. There is an observed need in merging GIS more with design
(e.g., the ”GeoDesign” concept recently promoted by Jack Dangermond) and modeling domains
(for a review of the issue of linking dynamic models with GIS see for example Brimicombe
(2009)). The fundamentals of representation of geographic data in geospatial software remains a
research issue. Goodchild et al (2007) present ”geo-atom”, a tuple of point in space-time, property,
and property value at the point, as a concept on which all other forms of geographic data can be
based on.

In this paper we describe and discuss the virtual base classes for geospatial layers and geospatial
features that we have implemented in the Perl modules of the Geoinformatica FOSS4G stack. The
motivation for the present work is to build a unified foundation on which to develop geospatial
software for spatial planning, design, and modeling.

MATERIALS AND METHODS

The Geoinformatica FOSS4G stack is based on GDAL and associated tools (PROJ4, GEOS, data
source drivers), Perl and Perl modules, especially those developed as part of Geoinformatica, and
GTK+ user interface toolkit. GDAL provides a unified interface to several data sources (files,
databases, servers) (raster and vector sources separately), tools for manipulating the data, and a
foreign language interface for using the library from other languages. The Geo::GDAL set of
modules is the Perl interface to GDAL. The Perl interface to Gtk2 is developed by the gnome-perl
(gtk2-perl) project. The Perl modules Glib, Pango, Cairo, and Gtk2 provide the fundamental Perl
interface to GTK+. Cairo is a separately developed vector graphics library.

Perl is a multi-paradigm language, which means that it makes most things possible but enforces
few. Object-oriented programming in Perl is based on ”blessed” variables. Variables may be blessed
into a module, which is basically a namespace (Geo::GDAL for example). The programmer may
send messages to, i.e., call module methods with, blessed variables. Inheritance and multiple
inheritance takes place through a module-scoped array, which contains names of the superclasses to
this class.

RESULTS AND DISCUSSION

The Perl classes that implement the fundamentals of a Geoinformatica application are

Gtk2::Ex::Geo::Layer, Gtk2::Ex::Geo::Glue, and Gtk2::Ex::Geo::Overlay. The first is a generic
class for geospatial layers, the second is a class, which manages a list of layers, and the third is a
map canvas widget.

Gtk2::Ex::Geo::Overlay is a subclass of Gtk2::ScrolledWindow, which means that it can be used as
a regular GTK+ scrolled window widget. The overlay class contains the image on its window, event
handling mechanisms, and the actual layer list. The image is created from a Cairo drawing surface
each time the map is drawn. An overlay object handles mouse button and key presses and releases
as zoom, pan, select, draw, etc., based on the interaction mode. Based on this interaction the overlay
object may also emit signals informing the rest of the application changes in the map canvas. The
overlay object also requests from all layers to render themselves on the Cairo drawing surface
(using a Cairo context, which can point to, among other things, a pdf document besides an image).
The method call contains also the viewport. The overlay class sets the following requirements to
layer objects: they must have a name and a world, and they must be able to respond to calls to
render themselves. A world of a geospatial layer is the bounding box of its data or events.

Gtk2::Ex::Geo::Glue is a singleton class. A glue object contains an overlay object and other
widgets, for example a tree view widget for visual list of the layers. The glue class implements
much of the logic that determines what happens when user interacts with the overlay widget, with
the layer list, or with separate layers. Most of these actions happen as responses to signals or
selections made on a menu. The glue class sets the following requirements to layer objects (not
repeating the requirements set by overlay): they must carry visibility and transparency information,
and they must respond to got_focus, select, render_selection calls, they also may have dialogs and
methods to be exposed to users for example as menu items. The features dialog is the only dialog
that is specifically called by the glue object as a response to new_selection signal coming from the
overlay. The glue object also asks for information for the layer list widget and tooltips. The dialogs
and some of the methods are information that should be available from the layer class as class
methods (as opposed to object methods). For this purpose layer classes are registered with the glue
object when the application boots.

The requirements set by the Geoinformatica framework for geospatial layers are not very
demanding and define the interface only in general terms. This interface is expanded a bit and the
basic state variables are implemented by Gtk2::Ex::Geo::Layer, which all layer classes must inherit.
The base class for layers contains three sets of information for visual representation of the layer
data: symbolization, coloring, and labeling. It also contains dialog boxes for user control for styling.
Subclasses may extend styling by simply adding new symbol types or completely overriding some
things.

The geospatial feature concept is introduced into the framework already in the map canvas level.
This is due to the concept of selecting a feature or features, which is a fundamental human interface
task. It is possible to consider a single cell of a geospatial raster a feature, but such code has not
(yet) been implemented in Geo::Raster, which is the main raster data class currently.

The subclasses of the base layer class are free to implement their data storage as they wish. Two
classes have been implemented on the top of Geo::GDAL classes for regular vector and raster data:
Geo::Vector and Geo::Raster.

Interactions between features, complex feature types, and dynamics are important domain
characteristics that should be supported by geospatial software tools for these tasks. In this paper we
will present virtual base classes for geospatial layers and features. We then present and examine
how to inherit new classes for traditional geospatial data and other types of data. The framework for
the work is the Geoinformatica geospatial software stack and its graphical user interface core. The

core comprises a set of classes for graphical geospatial software that build on GTK+ and its Perl
bindings (gtk2-perl) and Perl itself. The geospatial workhorses of the stack are GEOS and GDAL
with its Perl bindings.

Layer functionalities:
- (importing) data for the layer
- rendering the layer
- user interaction
- analytical capabilities

Layer data:
- geographic data (possibly a list of geo features)
- symbolization
- styling
- labeling

geo feature = geometry + a set of (key, value) pairs

Feature functionalities
- edit schema, data, geometry

REFERENCES

Brimicombe, A. (2009), GIS, Environmental Modeling and Engineering, 2nd edition. CRC Press

Burrough, P.A. (1986), Principles of Geographic Information Systems for Land Resources
Assessment. Clarendon Press, Oxford.

Goodchild, M.F., Yuan, M. and Cova, T.J. (2007), Towards a general theory of geographic
representation in GIS. International Journal of Geographical Information Science. Vol. 21, No. 3,
239–260

MacEachren, A.M., Gahegan, M., Pike, W., Brewer, I., Cai, G., Lengerich, E., Hardisty, F. (2004),
Geovisualization for Knowledge Construction and Decision Support. IEEE Computer Graphics and
Applications archive. Volume 24 , Issue 1. Pages: 13 – 17.

