

(Thoughts about) FOSS Solutions for
Geospatial Information Processing in

Environmental Science and Engineering
Ari Jolma

Professor, Aalto University, Finland

Outline

● Environmental science and engineering
● Free and open source software stack
● Geoinformatica
● Web-based tools

Environmental Science and Engineering:
Tasks, goals and topics

● Understanding
● Managing
● Developing solutions

for
● Studying
● Planning
● Engineering

● Civil infrastructure
● Environmental

change
● Sustainability
● Risks

Environmental Science and Engineering:
Subjects of Information

● Processes
● For example: p in river systems, coastal p, catchment p
● Physical and biological
● Positive and negative

● Plans
● Background materials: assessments, questionnaires, interviews
● Ideas, drafts

● Engineering structures building and maintenance
● Metadata, life-cycle
● Various stake-holders and contractors

The four problems of information
system development

● The presentation problem
● Map

● The interaction problem
● Display, mouse, keyboard

● The modeling problem
● Data models and algorithms

● The development problem
● Software tools

● Processes, plans and
life-cycles

● Risks, sustainability
criteria

The software stack

Operating system

Programming
languages

Applications

Windowing
toolkits

Scripting
languages

Libraries

Operating system

● The main choices: Linux-based, Win32-based,
Darwin-based

● Which distribution?
● For software development there are several

choices, including Gnu for Windows
● Portability is useful: It is often easy to deploy to

Win32 platform and users may prefer it
● Development (especially integration) is often

much easier on Linux-based systems

Programming languages

● C or C++? A part of the modeling community
prefers FORTRAN
● Doesn't really matter if the result is a shared library

● I make an important distinction between
programming languages and scripting languages
(which are high-level PLs in fact!)
● In my mind Java attempts to be both

● Some PLs are platform specific or make up their
own platform (C#, Java)
● This is always problematic

Libraries

● Should be easy to compile, focus on one task, have a clean
and stable interface, and in general do what they are
supposed to do and do it fast

● When within libraries: different data models are a hurdle, but
not a show-stopper
● Also, things may get complicated when you get closer to OS

(memory, error handling, threads,...)
– An occasional library developer should not have to deal with these – one

solution is to develop within an existing library (GDAL for example) or use a
utility library (GLib for example)

● Occasionally we need to use proprietary ones

● A general principle of mine is to always use libraries through
a scripting language foreign function interface

libral

● A C library I've been developing (and using as a
research/learning tool...) for raster algebra
● Simple in-memory rasters → really fast algorithms
● A back-end for Perl extension for raster algebra
● Code for rendering rasters and vector data (coming from

OGR) on GDK-pixbufs and/or Cairo surfaces has crept in
● Interoperates with GDAL rasters (very simple to convert a

libral raster to an OGR memory raster)
– Perl rasters can polymorphically be libral or GDAL rasters →

interesting possibilities for raster algebra

● Interoperates (well, one way currently) with PDL (Perl Data
Language) → easy to bring in data supported by PDL

Scripting languages

● Surprisingly many: Perl, Python, Ruby are well-known
all-purpose ones, but there are several more specialized
ones: R, The-Matlab-like-one-Octave-uses, Postscript, ...
and even more more specialized ones: SQL, Glade,
The-MILP-language-I-whipped-up, …
● The concept of little languages or minilanguages is well-

known

● Benefits: division of labor, domain-specificness, fewer
lines of code

● Problems: complexities of mixtures, debugging,
challenges to intellect

Windowing toolkits

● Needed when you are required to deliver an
application with a new graphical user interface

● I use GTK+, which is a part of GNOME, the
alternative is Qt (used by Quantum GIS for
example)
● GNOME is the default in Linux-based distributions

that I use
● gtk-perl is alive and well

Geoinformatica

● A stack of GDAL, libral, Perl, GTK+, gtk-perl

● Statistics of the Perl part (not counting external Perl modules
and GDAL Perl):
● ~19 500 lines of code, of which
● ~3 900 lines is comments
● 800 subroutines (= average 20 lines per sub)
● 19 dialogs (stored in Glade XML files)
● 40 source code files
● 5 major classes, 61 in all

● Start-up time ~3 seconds (the first time, 2nd time is faster)
● The main program is 250 lines, which sets up a vanilla application

Applications

● A program, which interacts with the user, who
wishes to accomplish a task
● Input-output program

– A small program written in a scripting language, often by the
user or a more generic program that is controlled by switches

– Task is well-structured
● Graphical program

– Task-oriented, with a as-simple-as-possible GUI, or a generic
one, with as large set of functionalities as possible

– Task often not so well-structured, typically providing decision
support or a platform for explorative research

– May also be used for structured tasks

Geoinformatica as a research
platform

● An optimized set of tools (for myself), with very good basic
functionality provided by packages (which are free)

● It is possible to deliver good solutions implemented as
good graphical applications
● Examples: soil database management tool, oil spill risk

assessment tool

● Really interesting simulation modeling applications still to
be developed

● Looking forward to study planning with complex features
and geospatial design (civil engineering, landscape
design)

The web

● Remote servers will be increasingly used as data
sources and data processing services

● Typically data will enter the system through data
access libraries. For example GDAL can already be
compiled to access WMS and WCS.

● Scripting languages are powerful tools to implement
those services. For example I've implemented a
simple WMS server for research purposes with Perl
equipped with appropriate modules (there is no
WMS module as such) with < 300 lines of code.

Deploying information about environmental
change using the Web

More interaction ...

Selected
location

The software stack used for the
climate change on lake ice study

● OpenLayers viewer
● WMS server (DIY)
● Analytical tools (DIY, Gnuplot)
● Data management (PostGIS)
● Geospatial computations (GEOS, GDAL)
● Spatial extrapolation of the geophysical model

(GDAL+Perl)
● The geophysical model (Octave)

Presentation
Interaction
Modeling
Development

Thank You!
ari.jolma@tkk.fi

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

