Geoinformatica: a modeling platform built on FOSS

Ari Jolma
Helsinki University of Technology
ari.jolma@tkk.fi

Environmental data analysis and modeling tools need interoperability and dagsatuti
managing application specific objects. Free and Open Source Software (B@SS)
successful software development paradigm, which has lead to the avaitztalitgrge

number of software components that can be exploited. This paper presents andsdegscusse
software stack that integrates three major FOSS components: Perl, GT&D#&L/OGR

into a geospatial data analysis and modeling platform. All of these thi®8 pf@jects

have a significant community support. The capabilities that the platform offezhlean
enhanced and partly created by code written in the current research priogeptaiform

offers generic programming capabilities; a GUI with analytical, riegleand

visualization support; and it is extendable in several ways. An interesting ptyssitio

define new geospatial layer types that are specifically targeteshinonmental data

analysis, modeling, and planning. The platform could be enhanced by one or more FOSS
graphics libraries that would enhance its visualization capabilities and sémport

interactive environmental planning.

1 Introduction

Environmental and civil engineering planning and management rely on eftoc@stor

analyzing and processing of data. These tools are often linked to simulationzagptimior

other types of models, or the models may be embedded into the tools. The data thatesl import
into the tools originates from observation networks, is obtained from data providerssuch a
meteorological institutes and land surveys, is input by the users, or is produced logéie m

The progress in making the software tools of civil engineers and environmemtagers more
efficient and more user-friendly has been impressive during the last decadés, ¢hariges in

the software industry, new technologies, and new user requirements calttier fanogress and
open up new possibilities.

One of the new requirements is interoperability, which states that it must biel@éssmultiple
users to analyze and work on the same problems and projects with multiple tools vetsthe |
amount of friction. Interoperability calls for shared data models and fownatsieast good
conversion tools. Another new requirement is the need to model and manage applicaitficn spec
objects in the software. “Product models”, popular in many other engineering éiatdsre the
structure of complex products. The machine-understandable descriptions of the components of
the products aid the design engineer in her work. One of the new possibilities is the dnprove
hardware, which allows us to work with larger and more datasets and with maegfydow
programs. Another new possibility is created by the emergence of free andmpee software
(FOSS), which makes it possible for developers to build large, tightly couplesinsysbm

freely available and free-to-use components.

This paper describes a software system, or rather a software stacksthathauilt on FOSS.
The stack is named “Geoinformatica”, and as its name implies, is mamsgféted as a platform
for processing, analyzing, and modeling with geospatial data. A gene@icleg@al of the
Geoinformatica project is to study the architecture of an environmentalrddyesia and
modeling software. Foci of the research include use of FOSS and scriptingdasgiuzking
FOSS components, combining a graphical and command line interfaces (GUI andr@dLl
extendable architectures. Garlan and Shaw (1994) have defined softwaectarshis the
overall system structure, which includes organizational and control issues azwifissted in
various architectural styles. Garlan and Shaw list, e.g., “pipes and’fif@aa abstraction and
object-orientation”, “event-based”, “layered”, and “repositories” asrnomarchitectural styles.

This paper presents and examines Geoinformatica and its enabling technoldgiescasses
the usability of the approach and its relevance to environmental data analysisdeithgn

2 The Geoinfor matica softwar e stack

The software stack of Geoinformatica is depicted in figure 1. The stack can deddivio at

least 7 layers, and each layer can contain one or more separate components. rlagerp@ee
usually on a higher abstraction level or closer to the user and application domain. The upper
layers also use the services provided by the lower layers. Three main sussysteémportant in
the architecture: the Perl programming language and shared code baseKtG&JEbolkit, and
the GDAL/OGR geospatial data abstraction and access library.

The Perl is a high-level programming language. The “high-level” implyingttieeprogrammer
need not care about technicalities such as compilation and memory managemeaohtgied
advanced built-in features such as a regular expression engine, which iavestt®l for, e.g.,
writing data input tools, and associative arrays (hashes), which are effective tools for
building and using complex data structures. The Perl community has createsl arthige of
Perl software: the Comprehensive Perl Archive Network (CPAN), which providesstons to
the core Perl.

The GTK toolkit offers a large set of widgets (GUI components) and a platborwriting
graphical, event driven software. GTK and GNOME, which is a software desktap thelt on
top of GTK, have several closely related FOSS projects. GeoinformatE&idsemainly
through its Perl interface, which is a separate FOSS project.

The GDAL/OGR geospatial data access library provides a generic Arlaiding,

manipulating, and creating geospatial datasets. The GDAL/OGR libcts\also as an interface,
for example, to the Proj4 cartographic projection library and to the GEOS liGitaeyGEOS
library implements all the standard (as defined by Open Geospatial Con3apiatial predicate
functions and spatial operators. GDAL/OGR is an Open Source Geospatial Found&tizenjO
project.

Perl, GTK, and GDAL/OGR are all multi-platform software and they have beésdporseveral
operating systems. The Geoinformatica software stack has been ported tahgakndows.

User interface layer (Perl modules Gtk2::Ex::Geo, gnuplot)

Analysis and modeling script layer (Perl modules)

Scripting interface layer (Perl bindings modules) Integration layer (libral)
Data access layer (GDAL/OGR) GUl tools layer (GTK)
Basic geospatial tools layer (Proj4, GEOS, libral) Graphics abstraction layer (Cairo)

Data management and serving layer (PostgreSQL, PostGIS, data format libraries)

System software layer (Perl, Development environment (Windows+MinGW+MSYS or Unix+GNU)

Figure 1. The software stack of Geoinformatica.

The author’s contribution to the Geoinformatica software stack is the Perl bindi@d3AL and
OGR (together with a few other developers), the libral C raster algebngyjibral some of the
Perl modules in the analysis and modeling and in the interface layers. Sdgcifical

 The GDAL and OGR Perl bindings are based on the generic SWIG-based bindings of
GDAL and OGR. SWIG is a FOSS high-level language wrapper and interfaesags®.
The Perl SWIG bindings, as any other language-specific component, coasist of a
typemap file. A typemap file contains details how in some specific cases (as opposed to
simple cases that are managed by SWIG default typemaps) data in Qetractu
mapped to or from data in Perl structures. Other things in the Perl bindings are
configurations for building and compiling them and documentation. The bindings are
distributed in the main GDAL/OGR package but they are also released asoBsles in
CPAN as modules in Geo::GDAL, Geo::OGR, and Geo::OSR namespaces. The OSR
namespace contains the SpatialReference and CoordinateTransformases,chhich
also come from the GDAL/OGR library.

» The libral raster algebra library is an independent library written in Glldan be
optionally linked to GDAL, OGR, and GDK Pixbuf (the GTK image system). libral

operates with in-memory integer or floating point rasters and supports iallElbgebraic
operations and focal, zonal, and global raster methods (Tomlin 1990). libral contains als
code for creating a libral raster from a GDAL dataset, for creatliiga vector

geometry from an OGR geometry, and for creating a GDK pixbuf and rendibralg

rasters and libral vectors on it. libral contains also some specific functions f

hydrological terrain analysis.

* The Perl module Geo::Raster is a Perl binding for libral. The Geo::Rastiénds are
written in XS, the Perl extension interface language, not in SWIG, which isgand
language-independent. The Perl module Geo::Vector is an additional layer on the top of
Geo::OGR modules. Both of these classes (Perl modules usually define dasses)
subclasses of Geo::Layer, which is the root class for all geographic layers i
Geoinformatica.

* The Perl modules in the Gtk2::Ex::Geo namespace build on the Perl GTK modules,
which are Perl bindings for the GTK GUI toolkit. The Gtk2::Ex::Geo::Overlay is
widget class for geographic canvas. An Overlay object manages an tregged by
libral from geospatial data, in a scrollable window. The Gtk2::Ex::Geo::Glaelsss,
which instantiates several GTK widgets including an Overlay object and mahages
interoperation. One of the widgets Glue manages is a simple text input, for waeh G
maintains input history. User input commands that originate from the text inputtwidge
are pre-processed and fed to a Perl code evaluator (which itself is arfeadrfy A
Glue object also manages an on-demand link to gnuplot for plotting.

The simplest possible GUI of Geoinformatica with all built-in widgethitas in figure 2.
Although the GUI provides the basic functionality of a desktop GIS as such, theptissums
that for specific data analysis and modeling needs a new GUI with more funtfieal
developed.

GUI of Geoinformatica =10l x|
Cpen raster layer Open veckor layer Foom ko all
narme I kype I i I a
mle ogr
190 _DEM2 G
clc_fiz&m G
zoam {x,v) = (3367 106,4962, 6720414, 9068 v

Figure 2. The simple GUI of Geoinformatica. The widgets are from top to deftig Fight: a
toolbar with three buttons (open raster, open vector, zoom to all), a treeview whiclsitbpla
stack of open layers, a geographic canvas with scrollbars, the text input fieldrfoomseands,
the status bar for displaying the interaction mode and information to the user. The ghotwse
parts of a land cover and DEM rasters and of a road network vector data layer.

3 Dataanalysiswith Geoinformatica

The data analysis functionality of Geoinformatica stem from (i) th/@cel capabilities
provided by libral and the included Perl modules; (ii) the capabilities for vaswaysis of
geospatial data provided by the graphical and overlaying functionalityraf ind Overlay; and
(i) the general graphical capabilities provided by gnuplot. Besides this dmadty, which is
readily available, added data analysis functionality can be developed intocthbystanking in
other FOSS tools. The author has experience, e.g., from using Graph with Geoiotormat
Graph is a Perl module, which contains a data structure and algorithms for gfagtesare also
several Perl modules for statistical analysis, using dates and fittieg curves, etc. The major
FOSS package for statistics is R and a spatial R project exists, but whelésthdR-Perl
interface project, it has not been tested with Geoinformatica.

The libral provides quite comprehensive analytical capabilites and these chlizbd
interactively in the GUI (see below in modeling chapter for more discussidns)rot by
writing the data analysis procedure into a Perl program. A limitation ishtedibral rasters are
completely in-memory and thus very large rasters have to be analysed.aBdenteraction
support through the command line is based on Perl code’s capability of executirayyaRetl
code in runtime. Such capability is common in scripting languages. The commarublirseirt
the Glue class and it provides an improved support for using the Perl’s bai#t-function. The
pre-processing consists of three steps: (i) the layer names that tineaysese are translated into
the internal names of the layer objects, (ii) some commandsyety.are expanded into fully
gualified method calls (“$self->" is added in front of the method name), andhinew layer,
which may spring into existence as a result of the command, is added into the &geksof

The visualization capabilities of the GUI are based on the graphics code in lirda3ic
functionality is to render all layers into the user-selected bounding box tatcngdcount
transparency, coloring, and symbology. The visualization capabilities arkntiesl, but at the
same time easily extendable in libral by, for example, adding new symilesl &yl writing
respective new C code. A potential remedy to the limitations would be to makeaigerwéric
graphics library — see below for more discussion on this issue. On the other hand, the line
drawing algorithm (Bresenham’s is used) and other fundamental graphickopexee re-used
in libral from raster methods. The drawing methods in libral can be used to drawastersand
to extract data from a raster. Libral contains a quite comprehensivengodystem and a similar
but more limited symbol system that can be used in rendering rasters andle¢at@upported
color palette types are single color, grayscale, rainbow, color tatalesahor bins. The color
table is a hash of integer, color entry pairs and the color bins structure is af lés, color
entry pairs. The bin can be either a bin that is defined by two integers or twunelaérs. In the
GUI there are respective dialogs for interactively defining the t@nd symbol system for a
layer. For visual analysis, the color of a cell, a geographic object, or akymnkhe symbol size
can be linked to a value of the cell or an attribute value of the geographic obge.ig
currently no support for rendering text to the geographic canvas and the supporttiogcrea
legends is very limited.

The Glue class is able to initiate a link to an external gnuplot program, andtirnsioygiot a

data file, which it has first created from user-supplied data. Thus, gnuplot cardide psa for
example histograms or longitudinal cross-sections from rasters. gnupiatsslf a powerful
visualization tool. It is also possible to simply print out values from data opened with
Geoinformatica. When the command line tool is used, the output goes to the terminahehere t
GUI was started.

4 Modeling with Geoinformatica

Models can be developed within Geoinformatica or existing models can be linkeid Whe
support for developing models within Geoinformatica stems from the raster aigdibral and

especially from the usability that Geo::Raster offers. The standatorailgequations for
Geo::Raster objects are overlaid, using the overlay functionality of P#rliivase provided by

libral. Thus it has been made possible to write code like $¢ = $a + $b, where, if one of $a or $b i
a raster object, then $c will be a raster object. The raster methods anddomeel@itors are

shown in table 1.

Table 1. The main methods in the Geo::Raster class.

Group Methods Overlaid operators
Arithmetics plus, minus, times, over, | +, -, *, /, %, **, +=, -=, *=,
modulo, power, add, 1=, %=, **=

subtract, multiply_by,
divide_by, modulus_with,
to_power_off

Logical operations

not, and, or

Comparisons It, gt, le, ge, eq, ne, cmp <, >, <=, >z, == 1= <>
Trigonometric etc. abs, acos, atan, atan2, ceilatan2, cos, sin, exp, abs,
functions cos, cosh, exp, floor, log, | log, sqrt

log10, sin, sinh, sqrt, tan,
tanh

Conditional assignments

min, max, if

Focal methods

count, count_of, min, ma
sum, mean, variance

X,

Zonal methods

count, count_of, min, mg
sum, mean, variance

1,

Global methods

min, max, sum, mean,

variance

The raster algebra methods in libral require that the rasters ammefssze and of same
geographic location. Thus, the common workflow with Geoinformatica starts witmigtdihe
datasets; deciding the location to be modeled, the cell size, and the cartograjebtopr and
preparing the datasets for libral. There is some support for these task€iditaad in libral —
clipping and joining rasters and setting their world coordinate systems, bub$tinese tasks
have to be done with, e.g., the command line tools of GDAL/OGR. libral does not have the
concept of a map projection.

GDAL supports several data types for rasters, for example 8 bit unsigagdriand 64 bit
floating points, but libral supports only single integer and single real datéthgexact data
type is a compile time option). Geo::Raster determines in run time whethersiongdrom
integer to real rasters or vice versa are needed and automaticalihesegsonversions without

user intervention.

Often data preparation for modeling requires a conversion from vector daskeioaiaraster to
vector. These are supported by Geo::Raster and Geo::Vector, but otherwise tio¢neery

much explicit support for modeling, which employs both raster and vector data ahtbdise.
They can of course be used together and linked via the shared world coordinate syiseam, if t
spatial coordinate systems (map projections) are the same.

Both Geo::Raster and Geo::Layer are subclasses of Geo::Layer, whiehostltlass for all
geographic layers in Geoinformatica. The Gtk2::Ex::Geo modules inipligfine the API of a
geographic layer by making calls to the layer objects as a result of usesdot displaying the
data and opening dialog boxes that list or allow adjusting the layer attriBot®® of these
method calls follow a protocol of query for capabilities, show the capabiltrasser, use the
capabilities as the user wishes. The default behavior of many of the methodememield in
the Layer class and it is overridden in subclasses.

5 Discussion

Geoinformatica is a platform for geospatial data analysis and modeliagfi§plata analysis

and modeling tasks and workflows are usually implemented as separataipteriosenteractive
sessions with the GUI. Similarly, models can be implemented in Geoinformajicagrtams

that are run from the command line, or as add-ons for the GUI. A typical add-on would be a
dialog box, developed with the Glade GUI design tool, and subroutines that are executed as a
result of actions on the dialog box.

Our experience shows that a typical data analysis tasks involving geospatiaqiate a Perl
program of roughly 100 lines in Geoinformatica, which usually can be based on geratia “re
raster dataset and produce a vector dataset” type programs. If the psegraito become
much larger, the programmer is probably overlooking a possibility to use amgxistnponent
that could be employed. Using a custom program is usually a step in a dasssamati(flow,
which otherwise consists of visual analysis and interactive steps with thélG&Jspecific
benefit of the Perl programming language is that data from arbiteerfiless and from formats
such as NetCDF, for which there usually is a Perl interface availableeczaslly combined
with or converted into more common geospatial data.

The mechanism of extending Geoinformatica with deriving new classesfeamLayer is
particularly interesting. The methods that need to be overridden in a new |sgeacdall
related to the functioning of GUI, thus the extension is mostly related to visicalizad
interactive use of Geoinformatica. However, possible layer classes, sieotpasal raster and
catchment management design, relate also strongly to new capabilities in data analysis and
modeling. With classes like these it is possible to imagine following workflow

* User runs a model on the Geoinformatica platform, which produces a temporal raster
This dataset is then analyzed with methods specific to this data type. The methods
include computations and visualizations that can be shown on the map display and/or on

the gluplot as timeseries etc. The temporal raster class itself slefusec graphical user
interaction for examining it.

» User zooms into her target location, clips pieces of global datasets, and rartkriwegh
standard hydrological methods. She then creates a new layer of the tyberfeat
management design”, which has an associated ontology. The layer clagssconta
descriptions of management actions and structures that the user interacsughg da a
map, constrained by the hydrological system, and being guided by the agaalihat
the layer can do.

The latter workflow mentions an ontology that is associated with a layer typle.a® ontology

is what is referred to as a product model in the introduction. The ontology for a catchment
management would contain descriptions of various structures and policies that cambe put i
use on a catchment. These descriptions would contain things that help the designertteepiac
onto map and into the hydrological system, and that would also provide input to water quality
and nutrient load etc. computations.

Geoinformatica would benefit from a generic graphics library or libsafi@de current graphics
code in libral works well in basic visualization of geospatial data but lacks&onge support

for text and other surfaces than raster images. Alternatives could be Cairo isviised by

GTK, which also has a Perl interface, and OpenSceneGraph, which is a 3D toollkdtrin the
integration of Cairo should not be a big technical problem and it would make it much dionpler
write new layer types that have specific visualization needs. The Open$aphdiGrary would

be much more difficult to integrate with Geoinformatica.

6 Conclusion

FOSS components can be used to develop platforms and tools for environmental dat analysi
and modeling. Scripting languages such as Perl, and probably also Python and Ruby, provide
efficient tools for integrating various libraries into interoperating staskwell as for writing

data analysis programs. Different data models, data structures, and appmakéésusually
necessary to write glue code for integrating libraries, but the resaltftan worth the effort.

Geoinformatica is a platform, which attempts to combine ease-of-use adtityravailable
powerful capabilities for data analysis and modeling. Capabilities of GDAIO&T are
exploited in such a way that opening of almost any geospatial dataset isagzeyilittes of Perl
are exploited in easy — from a developers point-of-view — and scriptable environmeatafor
analysis and modeling. Capabilities of GTK and Perl-GTK have been exploitesin ea
development of GUI programs and extensions.

7 References

Garlan, D. and Shaw, M. 1994. An introduction to software architecture. Advances in $oftwar
Engineering and Knowledge Engineering, Volume I, edited by V.Ambriola anor@ra,
World Scientific Publishing Company, New Jersey, 1993.

Tomlin, C.D. 1990. Geographic Information Systems and Cartographic Modelling.céretail
1990.

